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Avida: A Software Platform for
Research in Computational
Evolutionary Biology

Charles Ofria, David M. Bryson and Claus O. Wilke

Avida1 is a software platform for experiments with self-replicating and evolv-
ing computer programs. It provides detailed control over experimental set-
tings and protocols, a large array of measurement tools, and sophisticated
methods to analyze and post-process experimental data. This chapter ex-
plains the general principles on which Avida is built, its main components
and their interactions, and gives an overview of some prior research.

1.1 Introduction to Avida

When studying biological evolution, we have to overcome a large obstacle:
Evolution is extremely slow. Traditionally, evolutionary biology has there-
fore been a field dominated by observation and theory, even though some
regard the domestication of plants and animals as early, unwitting evolution
experiments. Realistically, we can carry out controlled evolution experiments
only with organisms that have very short generation times, so that popula-
tions can undergo hundreds of generations within a time frame of months or
years. With the advances in microbiology, such experiments in evolution have
become feasible with bacteria and viruses [18, 49]. However, even with mi-
croorganisms, evolution experiments still take a lot of time to complete and
are often cumbersome. In particular, some data can be difficult or impossible
to obtain, and it is often impractical to carry out enough replicas for high
statistical accuracy.

According to Daniel Dennett, “. . . evolution will occur whenever and wher-
ever three conditions are met: replication, variation (mutation), and differ-
ential fitness (competition)” [13]. It seems to be an obvious idea to set up
these conditions in a computer and to study evolution in silico rather than

1 Parts of the material in this chapter previously appeared in other forms [38, 37].
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in vitro. In a computer, it is easy to measure any quantity of interest with
arbitrary precision, and the time it takes to propagate organisms for sev-
eral hundred generations is only limited by the processing power available.
In fact, population geneticists have long been carrying out computer simula-
tions of evolving loci, in order to test or augment their mathematical theories
(see [21, 22, 28, 35, 40] for some examples). However, the assumptions put
into these simulations typically mirror exactly the assumptions of the analyt-
ical calculations. Therefore, the simulations can be used only to test whether
the analytic calculations are error-free or whether stochastic effects cause a
system to deviate from its deterministic description, but they cannot test the
model assumptions on a more basic level.

An approach to studying evolution that lies somewhere in between evo-
lution experiments with biochemical organisms and standard Monte Carlo
simulations is the study of self-replicating and evolving computer programs
(digital organisms). These digital organisms can be quite complex and inter-
act in a multitude of different ways with their environment or each other, so
that their study is not a simulation of a particular evolutionary theory but
becomes an experimental study in its own right. In recent years, research with
digital organisms has grown substantially ([5, 9, 17, 19, 24, 29, 53, 55, 56, 57],
see [3, 51] for reviews) and is being increasingly accepted by evolutionary bi-
ologists [39]. (However, as Barton and Zuidema [6] note, general acceptance
will ultimately hinge on whether artificial life researchers embrace or ignore
the large body of population-genetics literature.) Avida is arguably the most
advanced software platform to study digital organisms to date and is cer-
tainly the one that has had the biggest impact in the biological literature so
far. Having reached version 2.8, it now supports detailed control over exper-
imental settings, a sophisticated system to design and execute experimental
protocols, a multitude of possibilities for organisms to interact with their en-
vironment (including depletable resources and conversion from one resource
into another), and a module to post-process data from evolution experiments
(including tools to find the line of descent from the original ancestor to any
final organism, to carry out knock-out studies with organisms, to calculate
the fitness landscape around a genotype and to align and compare organisms’
genomes).

1.1.1 History of Digital Life

The most well-known intersection of evolutionary biology with computer sci-
ence is the genetic algorithm or its many variants (genetic programming,
evolutionary strategies, and so on). All these variants boil down to the same
basic recipe: (1) create random potential solutions, (2) evaluate each solu-
tion assigning it a fitness value to represent its quality, (3) select a subset of
solutions using fitness as a key criterion, (4) vary these solutions by making
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random changes or recombining portions of them, then (5) repeat from step
2 until you find a solution that is sufficiently good.

This technique turns out to be an excellent method for solving problems,
but it ignores many aspects of natural living systems. Most notably, natu-
ral organisms must replicate themselves, as there is no external force to do
so; therefore, their ability to pass their genetic information on to the next
generation is the final arbiter of their fitness. Furthermore, organisms in a
natural system have the ability to interact with their environment and with
each other in ways that are excluded from most algorithmic applications of
evolution.

Work on more naturally evolving computational systems began in 1990,
when Steen Rasmussen was inspired by the computer game “Core War” [14].
In this game, programs are written in a simplified assembly language and
made to compete in the simulated core memory of a computer. The win-
ning program is the one that manages to shut down all processes associated
with its competitors. Rasmussen observed that the most successful of these
programs were the ones that replicated themselves, so that if one copy were
destroyed, others would still persist. In the original “Core War” game, the di-
versity of organisms could not increase, and hence no evolution was possible.
Rasmussen designed a system similar to “Core War” in which the command
that copied instructions was flawed and would sometimes write a random
instruction instead on the one intended [43]. This flawed copy command in-
troduced mutations into the system, and thus the potential for evolution.
Rasmussen dubbed his new program “Core World,” created a simple self-
replicating ancestor, and let it run.

Unfortunately, this first experiment was only of limited success. While the
programs seemed to evolve initially, they soon started to copy code into each
other, to the point where no proper self-replicators survived – the system
collapsed into a non-living state. Nevertheless, the dynamics of this system
turned out to be intriguing, displaying the partial replication of fragments of
code and repeated occurrences of simple patterns.

The first successful experiment with evolving populations of self-replicating
computer programs was performed the following year. Thomas Ray designed
a program of his own with significant, biologically inspired modifications. The
result was the Tierra system [44]. In Tierra, digital organisms must allocate
memory before they have permission to write to it, which prevents stray copy
commands from killing other organisms. Death only occurs when memory fills
up, at which point the oldest programs are removed to make room for new
ones to be born.

The first Tierra experiment was initialized with an ancestral program that
was 80 lines long. It filled up the available memory with copies of itself,
many of which had mutations that caused a loss of functionality. Yet other
mutations were neutral and did not affect the organism’s ability to replicate
– and a few were even beneficial. In this initial experiment, the only selective
pressure on the population was for the organisms to increase their rate of
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replication. Indeed, Ray witnessed that the organisms were slowly shrinking
the length of their genomes, since a shorter genome meant that there was
less genetic material to copy, and thus it could be copied more rapidly.

This result was interesting enough on its own. However, other forms of
adaptation, some quite surprising, occurred as well. For example, some or-
ganisms were able to shrink further by removing critical portions of their
genome and then to use those same portions from more complete competi-
tors, in a technique that Ray noted was a form of parasitism. Arms races
transpired where hosts evolved methods of eluding the parasites, and they, in
turn, evolved to get around these new defenses. Some would-be hosts, known
as hyper-parasites, even evolved mechanisms for tricking the parasites into
aiding them in the copying of their own genomes. Evolution continued in
all sorts of interesting manner, making Tierra seem like a choice system for
experimental evolution work.

In 1992, Chris Adami began research on evolutionary adaptation with
Ray’s Tierra system. His intent was to have these digital organisms evolve
solutions to specific mathematical problems, without forcing them use a pre-
defined approach. His core idea was the following: If he wanted a population
of organisms to evolve, for example, the ability to add two numbers together
– he would monitor organisms’ input and output numbers. If an output ever
was the sum of two inputs, the successful organisms would receive extra CPU
cycles as a bonus. As long as the number of extra cycles was greater than
the time it took the organism to perform the computation, the leftover cycles
could be applied toward the replication process, providing a competitive ad-
vantage to the organism. Sure enough, Adami was able to get the organisms
to evolve some simple tasks, but he faced many limitations in trying to use
Tierra to study the evolutionary process.

In the summer of 1993, Charles Ofria and C. Titus Brown joined Adami
to develop a new digital life software platform, the Avida system. Avida
was designed to have detailed and versatile configuration capabilities, along
with high-precision measurements to record all aspects of a population. Fur-
thermore, whereas organisms are executed sequentially in Tierra, the Avida
system simulates a parallel computer, allowing all organisms to be executed
effectively simultaneously. Since its inception, Avida has had many new fea-
tures added to it, including a sophisticated environment with localized re-
sources, an events system to schedule actions to occur over the course of an
experiment, multiple types of CPUs to form the bodies of the digital organ-
isms, and a sophisticated analysis mode to post-process data from an Avida
experiment. Avida is under active development at Michigan State University,
led by Charles Ofria and David Bryson.
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1.2 The Scientific Motivation for Avida

Intuitively, it seems that natural systems should be used to best understand
how evolution produces the variation in observed in nature, but this can be
prohibitively difficult for many questions and does not provide enough detail.
Using digital organisms in a system such as Avida can be justified on five
grounds:

(1) Artificial life-forms provide an opportunity to seek generalizations about
self-replicating systems beyond the organic forms that biologists have stud-
ied to date, all of which share a common ancestor and essentially the same
chemistry of DNA, RNA, and proteins. As John Maynard Smith [27] made
the case: “So far, we have been able to study only one evolving system and
we cannot wait for interstellar flight to provide us with a second. If we want
to discover generalizations about evolving systems, we will have to look at
artificial ones.” Of course, digital systems should always be studied in paral-
lel with natural ones, but any differences we find between their evolutionary
dynamics open up what is perhaps an even more interesting set of questions.

(2) Digital organisms enable us to address questions that are impossible
to study with organic life-forms. For example, in one of our current experi-
ments we are investigating the importance of deleterious mutations in adap-
tive evolution by explicitly reverting all detrimental mutations. Such invasive
micromanaging of a population is not possible in a natural system, especially
without disturbing other aspects of the evolution. In a digital evolving sys-
tem, every bit of memory can be viewed without disrupting the system, and
changes can be made at the precise points desired.

(3) Other questions can be addressed on a scale that is unattainable with
natural organisms. In an earlier experiment with digital organisms [26], we
examined billions of genotypes to quantify the effects of mutations as well as
the form and extent of their interactions. By contrast, an experiment with
E. coli was necessarily confined to one level of genomic complexity. Digital
organisms also have a speed advantage: Population with 10,000 organisms can
have 20,000 generations processed per day on a modern desktop computer.
A similar experiment with bacteria took over a decade [25].

(4) Digital organisms possess the ability to truly evolve, unlike mere nu-
merical simulations. Evolution is open-ended and the design of the evolved
solutions is unpredictable. These properties arise because selection in digital
organisms (as in real ones) occurs at the level of the whole organism’s pheno-
type; it depends on the rates at which organisms perform tasks that enable
them to metabolize resources to convert them to energy and on the efficiency
with which they use that energy for reproduction. Genome sizes are suffi-
ciently large that evolving populations cannot test every possible genotype,
so replicate populations always find different local optima. A genome typical
consists of 50 to 1000 sequential instructions. With commonly 26 possible
instructions at each position, there are many more potential genome states
than there are atoms in the universe.
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(5) Digital organisms can be used to design solutions to computational
problems where it is difficult to write explicit programs that produce the de-
sired behavior [20, 23]. Current evolutionary algorithm approaches are based
on a simplistic view of evolution, leaving out many of the factors that are
believed to make it such a powerful force. Thus, there are new opportuni-
ties for biological concepts to have a large impact outside of biology, just as
principles of physics and mathematics are often used throughout other fields,
including biology.

1.3 The Avida Software

The Avida software2 is composed of two main components: The first is the
Avida core, which maintains a population of digital organisms (each with
their own genomes, virtual hardware, etc.), an environment that maintains
the reactions and resources with which the organisms interact, a scheduler
to allocate CPU cycles to the organisms, and various data collection objects.
The second component is a collection of analysis and statistics tools, includ-
ing a test environment to study organisms outside of the population, data
manipulation tools to rebuild phylogenies and examine lines of descent, mu-
tation and local fitness landscape analysis tools, and many others, all bound
together in a simple scripting language. In addition to these two primary com-
ponents, two forms of interactive user interface (UI) to Avida are currently
available: a text-based console interface (avida-viewer) and an education
focused graphical UI, Avida-ED [41]. These interfaces allow the researcher to
visually interact with the rest of the Avida software during an experiment.

In this chapter, we will discuss the two primary modules of Avida that
are relevant for experiments with digital organisms: the Avida core and the
analysis and statistics tools.

1.3.1 Avida Organisms

In Avida, each digital organism is a self-contained computing automaton
that has the ability to construct new automata. The organism is responsible
for building the genome (computer program) that will control its offspring
automaton and handing that genome to the Avida world. Avida will then
construct virtual hardware for the genome to be run on and determine how
this new organism should be placed into the population. In a typical Avida
experiment, a successful organism attempts to make an identical copy of

2 Avida packages are available at [1]. For additional information, see [2].
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its own genome, and Avida randomly places that copy into the population,
typically by replacing another member of the population.

In principle, the only assumption made about these self-replicating au-
tomata in the core Avida software is that their initial state can be described
by a string of symbols (their genome) and that it is possible through process-
ing these symbols to autonomously produce offspring organisms. However,
in practice, our work has focused on automata with a simple von Neumann
architecture that operate on an assembly-like language inspired by the Tierra
system. Future research projects will likely have us implement additional or-
ganism instantiations to allow us to explore additional biological questions.

In the following sub-sections, we describe the default hardware of our
virtual computers, and explain the principles of the language on which these
machines work.

1.3.1.1 Virtual Hardware

The structure of a virtual machine in Avida is depicted in Fig. 1.1. The
core of the machine is the central processing unit (CPU), which processes
each instruction in the genome and modifies the states of its components
appropriately. Mathematical operations, comparisons, and so on can be done
on three registers, AX, BX, and CX. These registers each store and manipulate
data in the form of a single, 32-bit number. The registers behave identically,
but different instructions may act on different registers by default (see below).
The CPU also has the ability to store data in two stacks. Only one of the
two stacks is active at a time, but it is possible to switch the active stack, so
that both stacks are accessible.

The program memory is initialized with the genome of the organism. Exe-
cution begins with the first instruction in memory and proceeds sequentially:
Instructions are executed one after the other, unless an instruction (such as
a jump) explicitly interrupts sequential execution. Technically, the memory
space is organized in a circular fashion, such that after the CPU executes the
last instruction in memory, it will loop back and continue execution with the
first instruction again. However, at the same time, the memory has a well-
defined starting point, important for the creation and activation of offspring
organisms.

Somewhat out of the ordinary in comparison to standard von Neumann
architectures are the four CPU components labeled heads. Heads are essen-
tially pointers to locations in the memory. They remove the need of abso-
lute addressing of memory positions, which makes the evolution of programs
more robust to size changes that would otherwise alter these absolute posi-
tions [36]. Among the four heads, only one, the instruction head (ip), has a
counterpart in standard computer architectures. The instruction head cor-
responds to the instruction pointer in standard architectures and identifies
the instruction currently being executed by the CPU. It moves one instruc-
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tion forward whenever the execution of the previous instruction has been
completed, unless that instruction specifically moved the instruction head
elsewhere.

CPU

Registers

AX:FF0265DC

BX:00000100

CX:1864CDFE

Stacks

nand

nop-A

nop-B

nop-D

h-search

h-copy

if-label

nop-C

h-divide

h-copy

mov-head

nop-B

IP

OP1?

FLOW

WRITE

READ

Memory

Heads

Input

Output

Environment

Fig. 1.1 The standard virtual machine hardware in Avida: CPU, registers, stacks, heads,
memory (genome), and environment I/O functionality.

The other three heads (the read head, the write head, and the flow

head) are unique to the Avida virtual hardware. The read and write heads
are used in the self-replication process. In order to generate a copy of its
genome, an organism must have a means of reading instructions from memory
and writing them back to a different location. The read head indicates the
position in memory from which instructions are currently being read, and the
write head likewise indicates the position to which instructions are currently
being written. The positions of all four heads can be manipulated with special
commands. In that way, a program can position the read and write heads
appropriately in order to self-replicate.

The flow head is used for controlling jumps and loops. Several commands
will reposition the flow control head, and other commands will move specific
heads to the same position in memory as the flow control head.

Finally, the virtual machines have an input buffer and an output buffer,
which they use to interact with their environment. The way in which this
communication works is that the machines can read in one or several numbers
from the input buffer, perform computations on these numbers with the help
of the internal registers AX, BX, CX, and the stacks, and then write the results
to the output buffer. This interaction with the environment plays a crucial
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role in the evolution of Avida organisms, and will be explained in detail in
Sect. 1.3.2.4.

1.3.1.2 Genetic Language

It is important to understand that there is not a single language that con-
trols the virtual hardware of an Avida organism. Instead, we have a collection
of different languages. The virtual hardware in its current form can execute
hundreds of different instructions, but only a small fraction of them are used
in a typical experiment. The instructions are organized into subsets of the
full range of instructions. We call these subsets instruction sets. Each in-
struction set forms a logical unit and can be considered a complete genetic
programming language.

Each instruction has a well-defined function in any context; that is, there
are no syntactically incorrect programs. Instructions do not have arguments
per se, but the behavior of certain instructions can be modified by succeeding
instructions in memory. A genome is therefore nothing more than a sequence
of symbols in an alphabet composed of the instruction set, similar to how
DNA is a sequence made up of 4 nucleotides or proteins are sequences with
a standard alphabet of 20 amino acids.

Here, we will give an overview of the default instruction set, which contains
26 instructions. This set is explained in more detail in the Avida documen-
tation, for those who wish to work with it.

Template Matching and Heads: One important ingredient of most Avida
languages is the concept of template matching. Template matching is a
method of indirectly addressing a position in memory. This method is similar
to the use of labels in many programming languages: Labels tag a position
in the program, so that jumps and function calls always go to the correct
place, even when other portions of the source code are edited. The same rea-
soning applies to Avida genomes, because mutations may cause insertions
or deletions of instructions that shift the position of code and would oth-
erwise jeopardize the positions referred to. Since there are no arguments to
instructions, positions in memory are determined by series of subsequent in-
structions. We refer to a series of instructions that indicates a position in the
genome as a template.

Template-based addressing works as follows. When an instruction is exe-
cuted that must reference another position in memory, subsequent nop in-
structions (described below) are read in as the template. The CPU then
searches linearly through the genome for the first occurrence of the comple-
ment to this template and uses the end of the complement as the position
needed by the instruction. Both the direction of the search (forward or back-
ward from the current instruction) and the behavior of the instruction if no
complement is found are defined specifically for each instruction.
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Avida templates are constructed out of no-operation (nop) instructions;
that is, instructions that do not alter the state of either CPU or memory
when they are directly executed. There are three template-forming nops,
nop-A, nop-B, and nop-C. They are circularly complementary; that is, the
complement of nop-A is nop-B, the complement of nop-B is nop-C, and
the complement of nop-C is nop-A. A template is composed of consecutive
nops only. A template will end with the first non-nop instruction.

Non-linear execution of code (“jumps”) has to be implemented through
clever manipulation of the different heads. This happens in two stages. First,
the instruction h-search is used to position the flow head at the desired
position in memory. Then, the ip is moved to that position with the command
mov-head. Fig. 1.2 shows an example of this.

... Some code.
10 h-search Prepare the jump by placing the

flow head at the end of the
complement template in forward direction.

11 nop-A This is the template. Let’s call it α.
12 nop-B

13 mov-head The actual jump. Move the flow head
to the position of the ip.

14 pop Some other code that is skipped.
..
.

18 nop-B The complement template ᾱ.
19 nop-C

... The program continues . . .

Fig. 1.2 Example code demonstrating flow control with heads-based instruction set.

Although this example looks somewhat awkward on first glance, evolution
of control structures such as loops are actually facilitated by this mechanism.
In order to loop over some piece of code, it is only necessary to position the
flow head correctly once and to have the command mov-head at the end of
the block of code that should be looped over. Since there are several ways in
which the flow head can be positioned correctly, of which the above example
is only a single one, there are many ways in which loops can be generated.

nop’s as Modifiers: The instructions in the Avida programming language
do not have arguments in the usual sense. However, as we have seen above for
the case of template matching, the effect of certain instructions can be mod-
ified if they are immediately followed by nop instructions. A similar concept
exists for operations that access registers. The inc instruction, for exam-
ple, increments a register by one. If inc is not followed by any nop, then
by default it acts on the BX register. However, if a nop is present immedi-
ately after the inc, then the register on which inc acts is specified by the
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type of the nop. For example, inc nop-A increments the AX register, and
inc nop-C increments the CX register. Of course, inc nop-B increments
the BX register and, hence, works identical to a single inc command. Sim-
ilar nop modifications exist for a range of instructions, such as those that
perform arithmetic like inc or dec, stack operations such as push or pop,
and comparisons such as if-n-equ. The details can be found in [38] or in
the Avida documentation. For some instructions that work on two registers
– in particular, comparisons – the concept of the complement nop is impor-
tant because the two registers are specified in this way. Similar to nops in
the template matching, registers are cyclically complementary to each other
(i.e., BX is the complement to AX, CX to BX, and AX to CX). The instruction
if-n-equ, for example, acts on a register and its complement register. By
default, if-n-equ compares whether the contents of the BX and CX regis-
ters are identical. However, if if-n-equ is followed by a nop-A, then it will
compare AX and BX. Fig. 1.3 shows a piece of example code that demonstrates
the principles of nop modification and complement registers.

01 pop We assume the stack is empty. In that case,
the pop returns 0, which is stored in BX.

02 pop Write 0 into the register AX as well.
03 nop-A

04 inc Increment BX.
05 inc Increment AX.

06 nop-A

07 inc Increment AX a second time.
08 nop-A

09 swap The swap command exchanges the contents
of a register with the one of its complement
register. Followed by a nop-C, it exchanges
the contents of AX and CX. Now, BX= 1, CX= 2,
and AX is undefined.

10 nop-C

11 add Now add BX and CX and store the result
in AX.

12 nop-A The program continues with BX= 1, CX= 2,
and AX= 3.

...

Fig. 1.3 Example code demonstrating the principle of nop modification.

nop modification is also necessary for the manipulation of heads. The
instruction mov-head, for example, by default moves the ip to the position
of the flow head. However, if it is followed by either a nop-B or a nop-C,
it moves the read head or the write head, respectively. A nop-A following
a mov-head leaves the default behavior unaltered.

Memory Allocation and Division: When a new Avida organism is created,
the CPU’s memory is exactly the size as its genome; that is, there is no ad-
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ditional space that the organism could use to store its offspring-to-be as it
makes a copy of its program. Therefore, the first thing an organism has to
do at the start of self-replication is to allocate new memory. In the default
instruction set, memory allocation is done with the command h-alloc. This
command extends the memory by the maximal size that an offspring is al-
lowed to have. As we will discuss later, there are some restrictions on how
large or small an offspring is allowed to be in comparison to the parent organ-
ism, and the restriction on the maximum size of an offspring determines the
amount of memory that h-alloc adds. The allocation always happens at a
well-defined position in the memory. Although the memory is considered to
be circular in the sense that the CPU will continue with the first instruction
of the program once it has executed the last one, the virtual machine never-
theless keeps track of which instruction is the beginning of the program and
which is the end. By default, h-alloc (as well as all alternative memory
allocation instructions, such as the old allocate) inserts the new memory
between the end and the beginning of the program. After the insertion, the
new end is at the end of the inserted memory. The newly inserted memory
is either initialized to a default instruction, typically nop-A, or to random
code, depending on the choice of the experimenter.

Allocate

Divide

Fig. 1.4 The h-alloc command extends the memory, so that the program of the off-
spring can be stored. Later, upon successful execution of h-divide, the program is split
into two parts, one of which becomes the genome of the offspring.

Once an organism has allocated memory, it can start to copy its program
code into the newly available memory block. This copying is done with the
help of the control structures we have already described, in conjunction with
the instruction h-copy. This instruction copies the instruction at the posi-
tion of the read head to the position of the write head and advances both
heads. Therefore, for successful self-replication, an organism mainly has to
assure that, initially, the read head is at the beginning of the memory and
the write head is at the beginning of the newly allocated memory, and then
it has to call h-copy for the correct number of times.
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After the self-replication has been completed, an organism issues the
h-divide command, which splits off the instructions between the read

head and the write headand uses them as the genome of a new organism.
The new organism is handed to the Avida world, which takes care of placing
it into a suitable environment and so on. If there are instructions left between
the write head and the end of the memory, these instructions are discarded,
so that only the part of the memory from the beginning to the position of
the read head remains after the divide.

In most natural asexual organisms, the process of division results in organ-
isms literally splitting in half, effectively creating two offspring. As such, the
default behavior of Avida is to reset the state of the parent’s CPU after the
divide, turning it back into the state it was in when it was first born. In other
words, all registers and stacks are cleared, and all heads are positioned at the
beginning of the memory. The full allocation and division cycle is illustrated
in Fig. 1.4.

Not all h-divide commands that an organism issues lead necessarily to
the creation of an offspring organism. There are a number of conditions that
have to be satisfied, otherwise the command will fail. Failure of a command
means essentially that the command is ignored, and a counter keeping track
of the number of failed commands in an organism is increased. It is possible
to configure Avida to punish organisms with failed commands. The following
conditions are in place: An h-divide fails if either the parent or the offspring
would have less than 10 instructions, the parent has not allocated memory,
less than half of the parent was executed, less than half of the offspring’s
memory was copied into, or the offspring would be too small or too large (as
defined by the experimenter).

1.3.1.3 Mutations

So far, we have described all of the elements that are necessary for self-
replication. However, self-replication alone is not sufficient for evolution.
There must be a source of variation in the population, which comes from
random mutations.

The principal form of mutations in typical Avida experiments are so-called
copy mutations, which arise through erroneously copied instructions. Such
miscopies are a built-in property of the instruction h-copy. With a certain
probability, chosen by the experimenter, the command h-copy does not
properly copy the instruction at the location of the read head to the location
of the write head, but instead writes a random instruction to the position
of the write head. It is important to note that the instruction written will
always be a legal one, in the sense that the CPU can execute it. However,
the instruction may not be meaningful in the context in which it is placed
in the genome, which, in the worst case, can render the offspring organism
non-functional.
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Another commonly used source of mutations are insertion and deletion
mutations. These mutations are applied on h-divide. After an organism
has successfully divided off an offspring, an instruction in the daughter or-
ganism’s memory may, by chance, be deleted or a random instruction may
be inserted. The probabilities with which these events occur are again deter-
mined by the experimenter. Insertion and deletion mutations are useful in
experiments in which frequent changes in genome size are desired. Two types
of insertion/deletion mutations are available in the configuration files; they
differ in that one is a genome-level rate and the other is a per-site rate.

Next, there are point (or cosmic ray) mutations. These mutations affect
not only organisms as they are being created (like the other types described
above), but all living organisms. Point mutations are random changes in the
memory of the virtual machines. One of the consequences of point mutations
is that a program may change while it is being executed. In particular, the
longer a program runs, the more susceptible it becomes to point mutations.
This is in contrast to copy or insertion and deletion mutations, whose impact
depends only on the length of the program, not on the execution time.

Finally, it is important to note that organisms in Avida can also have
implicit mutations. Implicit mutations are modifications in a offsping’s pro-
gram that are not directly caused by any of the external mutation mechanisms
described above, but rather by an incorrect copy algorithm of the parent or-
ganism. For example, the copy algorithm might skip some instructions of the
parent program or copy a section of the program twice (effectively a gene
duplication event). Another example is an incorrectly placed read head or
write head on divide. Implicit mutations are the only ones that cannot
easily be controlled by the experimenter. They can, however, be turned off
completely by using the FAIL IMPLICIT option in the configuration files,
which gets rid of any offspring that will always contain a deterministic dif-
ference from its parent, as opposed to one that is associated with an explicit
mutation.

1.3.1.4 Phenotype

Each organism in an Avida population has a phenotype associated with it.
Phenotypes of Avida organisms are defined in the same way as they are
defined for organisms in the natural world: The phenotype of an organism
comprises all observable characteristics of that organism. As an organism in
Avida goes through its life cycle, it will self-replicate and, at the same time,
interact with the environment. The primary mode of environmental interac-
tion is by inputting numbers from the environment, performing computations
on those numbers, and outputting the results. The organisms receive a benefit
for performing specific computations associated with resources as determined
by the experimenter (see Sect. 1.3.2.4).
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In addition to tracking computations, the phenotype also monitors several
other aspects of the organisms behavior, such as the organism’s gestation
length (the number of instructions the organism executes to produce an off-
spring, often also called gestation time), its age (the total number of CPU
cycles since it was born), if it has been affected by any mutations, how it
interacts with other organisms, and its overall fitness. These data are used
both to determine how many CPU cycles should be allocated to the organism
and for various statistical purposes.

1.3.1.5 Genotypes

In Avida, organisms are classified into several taxonomic levels. The lowest
taxonomic level is called genotype. All organisms that have exactly the same
initial genomes are considered to have the same genotype. Certain statistical
data are collected only at the genotype level. We pay special attention to the
most abundant genotype in the population – the dominant genotype – as a
method of determining what the most successful organisms in the population
are capable of. If a new genotype is truly more fit than than the dominant
one, organisms with this higher fitness will rapidly take over the population.

We classify a genotype as threshold if there are three or more organisms
that have ever existed of that genotype (the value 3 is not hard-coded, but
configurable by the experimenter). Often, deleterious mutants appear in the
population. These mutants are effectively dead and disappear again in short
order. Since these mutants are not able to successfully self-replicate (or at
least not well), there is a low probability of them reaching an abundance of
three. As such, for any statistics we want to collect about the living por-
tion of the population, we focus on those organisms whose genotype has the
threshold characteristic.

1.3.2 The Avida World

In general, the Avida world has a fixed number N of positions or cells. Each
cell can be occupied by exactly one organism, such that the maximum popu-
lation size at any given time is N . Each of these organisms is being run on a
virtual CPU, and some of them may be running faster than others. Avida has
a scheduler that divides up time from the real CPU such that these virtual
CPUs execute in a simulated parallel fashion.

While an Avida organism runs, it may interact with the environment or
other organisms. When it finally reproduces, it hands its offspring organism to
the Avida world, which places the newborn organism into either an empty or
an occupied cell, according to rules described below. If the offspring organism
is placed into an already occupied cell, the organism currently occupying that
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cell is killed and removed, irrespective of whether it has already reproduced
or not.

1.3.2.1 Scheduling

In the simplest of Avida experiments, all virtual CPUs run at the same speed.
This method of time-sharing is simulated by executing one instruction on
each of the N virtual CPUs in order, then starting over to execute a second
instruction on each one, and so on. An update in Avida is defined as the
point where the average organism has executed k instructions (where k = 30
by default). In this simple case, for one update, we carry out k rounds of
execution.

In more complex environments, however, the situation is not so trivial.
Different organisms will have their virtual CPUs executing at different speeds
(the details of which are described below) and the scheduler must portion out
cycles appropriately to simulate that all CPUs are running in parallel. Each
organism has associated with it a value that determines its metabolic rate
(sometimes referred to as merit). The metabolic rate indicates how fast the
virtual CPU should run. Metabolic rate is a unitless quantity and is only
meaningful when compared to the metabolic rates of other organisms. Thus,
if the metabolic rate organism A is twice that of organism B, then A should,
on average, execute twice as many instructions in any given time frame as B.

Avida handles this with two different schedulers (referred to as the
SLICING METHOD in the configuration files). The first one is a perfectly
integrated scheduler, which comes as close as possible to portioning out CPU
cycles proportional to each organisms’ metabolic rate. Obviously, only whole
time steps can be used; therefore, perfect proportionality is not possible in
general for small time frames. For time frames long enough such that the
granularity of individual time steps can be neglected, the difference between
the number of cycles given to an organism and the number of cycles the
organism should receive at its current metabolic rate is negligible.

The second scheduler is probabilistic. At each point in time, the next
organism to be executed is chosen at random, but with the probability of an
individual being chosen proportional to its metabolic rate. Thus, on average,
this scheduler is perfect, but there are no guarantees.

The perfectly integrated scheduler can be faster under various experimen-
tal configurations, but occasionally it can cause odd effects, because it is pos-
sible for the organisms to become synchronized, particularly at low mutation
rates where a single genotype can represent a large portion of the population.
The probabilistic scheduler avoids this effect and, in practice, is comparable
in performance with recent versions of Avida. The default configuration used
the probabilistic scheduler.
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1.3.2.2 World Topologies and Birth Methods

The N cells of the Avida world can be assembled into different topologies
that affect how offspring organisms are placed and how organisms interact
(as described below). Currently, there are three basic world topologies: a
2D bounded grid with Moore neighborhood (each cell has eight neighbors),
a 2D toroidal grid with Moore neighborhood, and a fully connected, clique
topology. In the latter, the fully connected topology, each cell is a neighbor
to every other cell. New topologies can easily be implemented by listing the
neighbors associated with each cell. A special type of meta-topology, called
demes, is described below.

When a new organism is about to be born, it will replace either the parent
cell or another cell from either its topological neighborhood or any cell within
the population (sometimes called well stirred or mass action). The specifics
of this placement strategy are set up by the experimenter. The two most
commonly used methods are replace random, which chooses randomly from
the potential cells, or replace oldest, which picks the oldest organism from
the potential organisms to replace (with a preference for empty cells if any
exist).

Mass action placement strategies are used in analogy to experiments with
microbes in well-stirred flasks or chemostats. These setups allow for expo-
nential growth of new genotypes with a competitive advantage, so that tran-
sitions in the state of the population can happen rapidly. Two-dimensional
topological neighborhoods, on the other hand, are more akin to a Petri dish,
and the spatial separation between different organisms puts limits on growth
rates and allows for a slightly more diverse population [8].

In choosing which organism in a neighborhood to replace, a random place-
ment matches up well with the behavior of a chemostat, where a random
portion of the population is continuously drawn out to keep population size
constant. Experiments have shown [4], however, that evolution occurs more
rapidly when the oldest organism in a neighborhood is the first to be killed
off. In such cases, all organisms are given approximately the same chance to
prove their worth, whereas in random replacement, about half the organisms
are killed before they have the opportunity to produce a single offspring. In-
terestingly, when replace oldest is used in 2D neighborhoods, 40% of the time
it is the parent that is killed off. This observation makes sense, because the
parent is obviously old enough to have produced at least one offspring.

Note that in the default setup of Avida, replacement by another organism
is not the only way for an organism to die. It is also possible for an organism
to be killed after it has executed a specified number of instructions, which
can either be a constant or proportional to the organism’s genome length, the
default. Without this setting, it is possible in some cases for a population to
lose all ability to self-replicate, but it persist since organisms have no means
by which to be purged.
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1.3.2.3 Demes

Demes, a relatively new feature of Avida, subdivide the main population into
sub-populations of equal size and structure. Each deme is isolated, although
the population scheduler is shared among all demes. Typical experiments us-
ing demes provide a mechanism for deme-level replication. Such mechanisms
will either test for the completion of a group activity or replicate demes based
on a measured value (the latter being akin to mechanisms used in a genetic
algorithm). There are several possible modes of deme replication. The de-
fault replication method creates a genome-level copy of each organism in the
parent deme, placing the offspring into the target deme. The experimenter
can configure Avida to perform a variety of alternative replication actions,
including germline replication, where each deme has base genotype that is
used to seed new copies with a single organism.

1.3.2.4 Environment and Resources

All organisms in Avida are provided with the ability to absorb a default re-
source that gives them their base metabolic rate. An Avida environment can,
however, contain other resources that the organisms can absorb to modify
their metabolic rate. The organisms absorb a resource by carrying out the
corresponding computation or task.

An Avida environment is described by a set of resources and a set of
reactions that can be triggered to interact with those resources. A reaction
is defined by a computation that the organism must perform to trigger it,
a resource that is consumed by it, a metabolic rate effect on the organism
(which can be proportional to the amount of resource absorbed or available),
and a byproduct resource if one should be produced. Reactions can also have
restrictions associated with them that limit when a trigger will be successful.
For example, another reaction can be required to have been triggered first,
or a limit can be placed on the number of times an organism can trigger a
certain reaction.

A resource is described by an initial quantity (which can be infinite if a re-
source should not be depletable), an inflow rate (the amount of that resource
that should come into the population per update), and an outflow rate (the
fraction of the resource that should be removed each update.) If resources
are made to be depletable, then the more organisms trigger a reaction, the
less of that resource is available for each of them. This setup allows multiple,
diverse sub-populations to stably coexist in an Avida world [10].

The default Avida environment rewards nine boolean logic operations,
each associated with a non-depletable resource, but organisms can receive
only one reward per computation. Other pre-built environments that come
with Avida include one with 77 different logic operations rewarded, one sim-
ilar to the default 9-resource environment, but with the resources set up to
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be depletable, with fixed inflow and outflow rates, and one with 9 compu-
tations rewarded, and where only the resources associated with the simplest
computations have an inflow into the system, and those for more complex
operations are produced as byproducts, in sequence, from the reactions using
up resources associated to simpler computations.

An important aspect of Avida is that the environment does not care how a
computation is performed, only that the output of the organism being tested
is correct given the inputs it took in. As a consequence, the organisms find
a wide variety of ways of computing their outputs, some of which can be
surprising to a human observer, seeming to be almost inspired.

Even though organisms can carry out tasks and collect associated resources
at any time in their gestation cycle, these reactions typically do not imme-
diately affect the speed at which their virtual CPU runs. The CPU speed
(metabolic rate) is set only once at the beginning of the gestation cycle and
then held constant until the organism divides. At that point, both the or-
ganism and its offspring have their metabolic rates adjusted, reflecting the
resources the organism collected during the gestation cycle it just completed.
In a sense, the organisms collect resources for their offspring, rather than for
themselves. The reason why we do not change an organism’s metabolic rate
during its gestation cycle is to level the playing field between old and young
organisms. If organisms were always born with a low initial CPU speed, then
they may never execute enough instructions to carry out tasks in the first
place. At the same time, mutants specialized in carrying out tasks but not
dividing could concentrate all CPU time on them, thus effectively shutting
down replication in the population. It can be shown that the average fitness
of a population in equilibrium is independent of whether organisms get the
bonuses directly or collect them for their offspring [50].

1.3.2.5 Organism Interactions

As explained above, populations in Avida have a firm cap on their size,
which makes space for the fundamental resource for which the organisms must
compete. In the simplest Avida experiments, the only interaction between
organisms is that an organism is killed when another gives birth, in order
to make room for the offspring. In slightly more complex experiments, the
organisms collect resources that increase their metabolic rate and hence earn
a larger share of the CPU cycles for performing tasks. Since there are only a
fixed number of CPU cycles given out each update, the competition for them
becomes a second level of indirect interactions among the organisms. As the
environment becomes more complex still, multiple resources take the place of
fixed metabolic rate bonuses for performing tasks, and the organisms must
now compete over each of these resources independently. In the end, however,
all these interactions boil down to the indirect competition for space: More
resources imply a higher metabolic rate, which, in turn, grants the organisms
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a larger share of the CPU cycles, allowing them to replicate more rapidly and
claim more space for their genotype.

In most Avida experiments, indirect competition for space is the only
level of interaction we allow; organisms are not allowed to directly write to
or read from each other’s genomes, so that Tierra-style parasites cannot form
(although the configuration files do allow the experimenter to enable them).
The more typical way of allowing parasites in Avida is to enable the inject
command in the Avida instruction set. This command works similar to divide,
except that instead of replacing an organism in a target cell, the would-be
offspring is inserted into the memory of the organism occupying the target
cell; the specific position in memory to which it is placed is determined by
the template that follows the inject.

In Tierra, parasites can replicate more rapidly than non-parasites, but an
individual parasite poses no direct harm to the host whose code it uses. These
organisms could, therefore, be thought of more directly as cheaters in the
classic biological sense, as they effectively take advantage of the population
as a whole. In Avida, a parasite exists directly inside of its host and makes use
of the CPU cycles that would otherwise belong to the host, thereby slowing
down the host’s replication rate. Depending on the type of parasite, it can
either take all of the host’s CPU cycles (thereby killing the host) and use
them for replicating and spreading the infection, or else spread more slowly
by using only a portion of the hosts CPU cycles (sickening it) but reducing
the probability of driving the hosts, and hence itself, into extinction.

Two additional forms of interaction, resource sensors and direct commu-
nication, can be enabled by the experimenter. Resources sensors allow or-
ganisms to detect the presence of resources in the environment, a capability
that could be used to exchange chemical signals. Direct communication can
allow organisms to send numbers to each other and possibly distribute com-
putations among themselves to solve environmental challenges more rapidly.
Avida supports a variety of communication forms, including directional mes-
saging to adjacent organisms, organism constructed communication networks,
and population-wide broadcast messaging.

1.3.3 Test Environments

Often when examining populations in Avida, the user will need to know the
fitness or some other characteristic of an organism that has not yet gone
through a full gestation cycle during the course of the run. For this reason,
we have constructed a test environment for the organisms to be run in, with-
out affecting the rest of the population. This test environment will run the
organism for at least one gestation and can either be used during a run or as
part of post-processing.
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When an organism is loaded into a test environment, its instructions are
executed until it produces a viable offspring or a time-out is reached. Un-
fortunately, it is not possible to guarantee identification of non-replicative
organisms (this is known as the Halting Problem in computer science), so
at some point we must give up on any program we are testing and assume
it to be dead. If age-based death is turned on in the actual population, this
becomes a good limit for how long a CPU in the test environment should be
run.

The fact that we want to determine if an organism is viable can also cause
some problems in a test environment. For example, we might determine that
an organism does produce an offspring but that this offspring is not identical
to itself. In this case we take the next step of continuing to run the offspring
in the test environment and, if necessary, its offspring until we either find
a self-replicator or a sustainable cycle. By default, we will only test three
levels of offspring before we assume the original organism to be non-viable
and move on. Such cases happen very rarely, and not at all if you turn off
implicit mutations from the configuration file.

Two final problems with the test environments include that they do not
properly reflect the levels of limited resources (this can be difficult to know,
particularly if we are post-processing) and that they do not handle any special
interactions with other organisms since only one is being tested at a time.
Both of these issues are currently being examined and we plan to have a much
improved test environment in the future. Test environments do, however,
work remarkably well in most circumstances.

In addition to reconstructing statistics about organisms as they existed in
the population, it is also possible to determine how an organism would have
fared in an alternate environment, or even to construct entirely new genomes
to determine how they perform. This last approach includes techniques such
as performing all single-point mutations on a genome and testing each result
to determine what its local fitness landscape looks like or artificially crossing
over pairs of organisms to determine their viability. Test environments are
most commonly used in the post-processing of Avida data, as described in
the next section.

1.3.4 Performing Avida Experiments

Currently, there are two main methods of running Avida – either with one of
the user interfaces described above or via the command line executable (which
is faster and full featured but requires the user to pre-script the complete
experimental protocol). Researchers will often use one of the user interfaces
to get an intuitive feel of how an experiment works, but then they will shift to
the command line executable when they are ready to perform more extensive
data collection.
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The complete configuration of an Avida experiment consists of five differ-
ent initialization files. The most important of these is the main configuration
file, called avida.cfg by default and typically referred to as simply the
‘config’ file. The config file contains a list of variables that control all of the
basic settings of a run, including the population size, the mutation rates, and
the names of all of the other initialization files necessary. Next, we have the
instruction set, which describes the specific genetic language used in the ex-
periment. Third is the ancestral organism with which the population should
be seeded. Fourth, we have the environment file that describes which re-
sources are available to the organisms and defines reactions by the tasks that
trigger them, their value, the resource that they use, and any byproducts
that they produce. The final configuration file is events, which is used to
describe specific actions that should occur at designated time points during
the experiment, including most data collection and any direct disruptions to
the population. Each of these files is described in more detail in the Avida
documentation.

Once Avida has been properly installed and the configuration files set up,
it can be started in command line mode by simply running the avida exe-
cutable from within the directory that contains the configuration files. Some
basic information will scroll by on the screen (specifically, current update
being processed, number of generations, average fitness, and current popula-
tion size). When the experiment has completed, the process will terminate
automatically, leaving a set of output files that described the completed ex-
periment. These output files are, by default, placed in a subdirectory called
data. Each output file begins with a comment header describing the contents
of file.

1.3.5 Analyze Mode

Avida has an analysis-only mode (short: analyze mode), which allows for
powerful post-processing of data. Avida is brought into the analyze mode
by the command-line parameter “-a”. In analyze model, Avida processes the
analyze file specified in the configuration file (“analyze.cfg” by default). The
analyze file contains a program written in a simple scripting language. The
structure of the program involves loading in genotypes in one or more batches
and then either manipulating single batches or doing comparisons between
batches.

In the following subsections, we present a couple of example programs
that will illustrate the basics of the analyze scripting language. A full list of
commands available in analysis mode is given in the Avida documentation.
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1.3.5.1 Testing a Genome Sequence

The following program will load in a genome sequence, run it in a test envi-
ronment, and output the results of the tests in a couple of formats:

VERBOSE

LOAD_SEQUENCE rmzavcgmciqqptqpqctletncoggqxutycuastva

RECALCULATE

DETAIL detail_test.dat fitness length viable sequence

TRACE

PRINT

The program starts off with the VERBOSE command, which causes Avida
to print to the screen all details of what is going on during the execution
of the analyze script; the command is useful for debugging purposes. The
program then uses the LOAD SEQUENCE command to define a specific genome
sequence in compressed format. (The compressed format is used by Avida
in a number of output files. The mapping from instructions to letters is
determined by the instruction set file and may change if the instruction set
file is altered.)

The RECALCULATE command places the genome sequence into the test
environment and determines the organism’s fitness, metabolic rate, gestation
time, and so on. The DETAIL command that follows prints this information
into the file “detail test.dat”. (This filename is specified as the first argument
of DETAIL.) The TRACE and PRINT commands will then print individual files
with data on this genome, the first tracing the genome’s execution line by line
and the second summarizing several test results and printing the genome line
by line. Since no directory was specified for these commands, the resulting
output files are created in “archive/”, a subdirectory of the “data” directory.
If a genotype has a name when it is loaded, then that name will be kept.
Otherwise, it will be assigned a name starting with “org-S1”, then “org-S2”,
and so on. The TRACE and PRINT commands add their own suffixes (“.trace”
and “.gen”) to the genome’s name to determine the filenames they will use.

1.3.5.2 Finding Lineages

The portion of an Avida run that we will often be most interested in is the lin-
eage from a genotype (typically the final dominant genotype) back to the orig-
inal ancestor. There are tools in the analyze mode to obtain this information,
provided that the necessary population and historical data have been written
out with the events SavePopulation and SaveHistoricPopulation.
The following program demonstrates how to make use of these data files.
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FORRANGE i 100 199

SET d /Users/brysonda/research/instset/is_ex_$i

PURGE_BATCH

LOAD $d/detail-100000.pop

LOAD $d/historic-100000.pop

FIND_LINEAGE num_cpus

RECALCULATE

lineage-$i.html depth parent_dist html.sequence

END

The FORRANGE command runs the contents of the loop once for each
possible value in the range, setting the variable i to each of these values in
turn. Thus the first time through the loop, ‘i’ will be equal to the value 100,
then 101, 102, and so on, all the way up to 199. In this particular case, we
have 100 runs (numbered 100 through 199) with which we want to work.

The first thing we do once inside the loop is to set the value of variable ‘d’
to be the name of the directory with which we are going to be working. Since
this directory name is long, we do not want to have to type it every time we
need it. If we set it to the variable ‘d’, then all we need to do is type “$d”
in the future.3 Note that in this case we are setting a variable to a string
instead of a number; that is fine, and Avida will figure out how to handle the
contents of the variable properly. The directory we are working with changes
each time the loop is executed, since the variable ‘i’ is part of the directory
name.

We then use the command PURGE BATCH to get rid of all genotypes from
the last execution of the loop (lest we are accumulating more and more geno-
types in the current batch) and refill the batch by using LOAD to read in all
genotypes saved in the file “detail-100000.pop” within our chosen directory.
A detail population (“.pop”) file contains all of the genotypes that were cur-
rently alive in the population at the time the detail file was printed, whereas
a historic file contains all of the genotypes that are ancestors of those that
are still alive. The combination of these two files gives us the lineages of the
entire population back to the original ancestor. Since we are only interested
in a single lineage, we next run the FIND LINEAGE command to pick out a
single genotype and discard everything else except for its lineage. In this case,
we pick the genotype with the highest abundance (i.e., the highest number
of organisms, or virtual CPUs, associated with it) at the time of output.

As before, the RECALCULATE command gets us any additional information
we may need about the genotypes, and then we print that information to a file
using the DETAIL command. The filenames that we are using this time have
the format “lineage-$i.html” that is, they are all being written to the “data”
directory, with filenames that incorporate the run number. Also, because the
filename ends in the suffix “.html”, Avida prints the file in html format, rather
than in plain text. Note that the specific values that we choose to print take

3 Analyze mode variable names are currently limited to a single letter.

DETAIL
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advantage of the fact that we have a lineage (and hence have measured things
like the genetic distance to the parent) and are in html mode (and thus can
print the sequence using colors to specify where exactly mutations occurred).

These examples are only meant to present the reader with an idea of the
types of analyses available in this built-in scripting language. Many more are
possible, but a more exhaustive discussion of these possibilities is beyond the
scope of this chapter.

1.4 A Summary of Avida Research

Avida has been used in several dozen peer-reviewed scientific publications,
including Nature [26, 24, 53] and Science [7]. We describe a few of our more
interesting efforts ahead.

1.4.1 The Evolution of Complex Features

When Darwin first proposed his theory of evolution by natural selection, he
realized that it had a problem explaining the origins of vertebrate eye [11].
Darwin noted that “In considering transitions of organs, it is so important
to bear in mind the probability of conversion from one function to another.”
That is, populations do not evolve complex new features de novo, but instead
modify existing, less complex features for use as building blocks of the new
feature. Darwin further hypothesized that “Different kinds of modification
would [. . . ] serve for the same general purpose,” noting that just because
any one particular complex solution may be unlikely, there may be many
other possible solutions, and we only witness the single one lying on the
path evolution took. As long as the aggregate probability of all solutions is
high enough, the individual probabilities of the possible solutions are almost
irrelevant.

Substantial evidence now exists that supports Darwin’s general model for
the evolution of complexity (e.g., [12, 20, 31, 32, 54]), but it is still diffi-
cult to provide a complete account of the origin of any complex feature due
to the extinction of the intermediate forms, imperfection of the fossil record,
and incomplete knowledge of the genetic and developmental mechanisms that
produce such features. Digital evolution allowed us to surmount these diffi-
culties and track all genotypic and phenotypic changes during the evolution
of a complex trait with enough replication to obtain statistically powerful
results [24]. We isolated the computation EQU (logical equals) as a com-
plex trait and showed that at least 19 coordinated instructions are needed
to perform this task. We then performed an experiment that consisted of
100 independent populations of digital organisms being evolved for approx-
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imately 17,000 generations. We evolved 50 of these populations in a control
environment where EQU was the only task rewarded; we evolved the other 50
in a more complex environment where an assortment of 8 simpler tasks were
rewarded as well, to test the importance of intermediates in the evolution of
a complex feature.

Results: In 23 of the 50 experiments in the complex environment, the EQU
task was evolved, whereas none of the 50 control populations evolved EQU,
illustrating the critical importance of features of intermediate complexity
(P ≈ 4.3 × 10−9, Fisher’s exact test). Furthermore, all 23 implementations
of the complex trait were unique, with many quite distinct from each other
in their approach, indicating that, indeed, this trait had numerous solutions.
This observation is not surprising, since even the shortest of the implemen-
tations found were extraordinarily unlikely (approximately 1 in 1027). We
further analyzed these results by tracing back the line of decent for each pop-
ulation to find the critical mutation that first produced the complex trait. In
each case, these random mutations transformed a genotype unable to perform
EQU into one that could, and even though these mutations typically affected
only 1 to 2 positions in the genome, a median of 28 instructions were required
to perform this complex task – a change in any of these instruction would
cause the task to be lost, thus it was complex from the moment of its creation.
It is noteworthy to mention that in 20 of the 23 cases the critical mutations
would have been detrimental if EQU were not rewarded, and in 3 cases the
prior mutation was actively detrimental (causing the replication rate for the
organisms to drop by as much as half), yet it turned out to be critical for the
evolution of EQU; when we reverted these seemingly detrimental mutations,
EQU was lost.

1.4.2 Survival of the Flattest

When organisms have to evolve under high mutation pressure, their evolu-
tionary dynamics is substantially different from that of organisms evolving
under low mutation pressure, and some of the high-mutation-rate effects can
appear paradoxical at first glance. Most of population genetics theory has
been developed under the assumption that mutation rates are fairly low,
which is justified for the majority of DNA-based organisms. However, RNA
viruses, the large class of viruses that cause diseases such as the common
cold, influenza, HIV, SARS, or Ebola, tend to suffer high mutation rates, up
to 10−4 substitutions per nucleotide and generation [16]. The theory describ-
ing the evolutionary dynamics at high mutation rates is called quasispecies
theory [15].

The main prediction for the evolutionary process at high mutation rates
is that the selection acts on a cloud of mutants, rather than on individual se-
quences. We tested this hypothesis in Avida [53]. First, we let strains of digital
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organisms evolve to both a high-mutation-rate and a low-mutation-rate en-
vironment. The rationale behind this initial adaptation was that strains that
evolved at a low mutation rate should adapt to ordinary individual-based se-
lection, whereas strains that evolved at a high mutation rate should adapt to
selection on mutant clouds, which means that these organisms should max-
imize the overall replication rate of their mutant clouds, rather than their
individual replication rates. This adaptation to maximize overall replication
rate under high mutation pressure takes place when organisms trade individ-
ual fitness for mutational robustness, so that their individual replication rate
is reduced, but, in return, the probability that mutations cause further reduc-
tion in replication rate is also reduced [52]. Specifically, we took 40 strains of
already evolved digital organisms and let each evolve for an additional 1000
generations in both a low-mutation-rate and a high-mutation-rate environ-
ment. As result, we ended up with 40 pairs of strains. The two strains of each
pair were genetically and phenotypically similar, apart from the fact that
one was adapted to a low mutation rate and one to a high mutation rate. As
expected, we found that in the majority of cases the strains evolved at a a
high mutation rate had a lower replication speed than the ones evolved at a
low mutation rate.

Next, we let the two types of strains compete with each other, in a setup
where both strains would suffer from the same mutation rate, which was
either low, intermediate, or high. Not surprisingly, at a low mutation rate
the strains adapted to that mutation rate consistently outcompeted the ones
adapted to a high mutation rate, since, after all, the former ones had the
higher replication rate (we excluded those cases in which the strain that
evolved at a low mutation rate had a lower or almost equal fitness to the
strain evolved at a high mutation rate). However, without fail, the strain
adapted to a high mutation rate could win the competition if the mutation
rate during the competition was sufficiently high [53]. This result may sound
surprising at first, but it has a very simple explanation. At a high mutation
rate (one mutation per genome per generation or higher), the majority of
an organism’s offspring differ genetically from their parent. Therefore, if the
parent is genetically very brittle, so that most of these mutants have a low
replication rate or are even lethal, then the overall replication rate of all of
the organism’s offspring will be fairly moderate, even though the organism
itself may produce offspring at a rapid pace. If a different organism produces
offspring at a slower pace, but is more robust toward mutations, so that the
majority of this organism’s offspring have a replication rate similar to that
of the parent, then the overall replication rate of this organism’s offspring
will be larger than the one of the first organism. Hence, this organism will
win the competition, even though it is the slower replicator. We termed this
effect the “survival of the flattest,” because at a sufficiently high mutation
rate, a strain that is located at a low but flat fitness peak can outcompete
one that is located on a high but steep fitness peak.
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1.4.3 Evolution of Digital Ecosystems

The experiments discussed above have all used single-niche Avida popula-
tions, but evolutionary design is more interesting (and more powerful) when
we consider ecosystems. The selective pressures that cause the formation
and diversity of ecosystems are still poorly understood [46, 48]. In part, the
lack of progress is due to the difficulty of performing precise, replicated, and
controlled experiments on whole ecosystems [30]. To study simple ecosys-
tems in a laboratory microcosm (reviewed in [49]), biologists often use a
chemostat, which slowly pumps resource-rich media into a flask containing
bacteria, simultaneously draining its contents to keep the volume constant.
Unfortunately, even in these model systems, ecosystems can evolve to be more
complex than is experimentally tractable and understanding their formation
remains difficult [33, 34, 42].

We set up Avida experiments based on this chemostat model [10] wherein
nine resources flow into the population, and 1% of unused resources flow out.
We used populations with 2500 organisms, each of which absorbed a small
portion of an available resource whenever they performed the corresponding
task. If too many organisms focus on the same resource, it will no longer be
plentiful enough to encourage additional use.

Fig. 1.5 Visualizations of phylogenies from the evolution of (a) a single-niche population,
and (b) a population with limited resources. The x-axis represents time, and the y-axis
is depth in the phylogeny (distance from the original ancestor). Intensity at each position
indicates the number of organisms alive at a time point, at a particular depth in the tree.

Theory predicts that an environment with either a single resource or
with resources in unlimited quantities is capable of supporting only one
species [47], and this is exactly what we see in the standard Avida exper-
iments. It is the competition over multiple, limited resources that is believed
to play a key role in the structuring of communities [45, 49]. In 30 trials
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under the chemostat regime in Avida, a variety of distinct community struc-
tures developed [10]. Some evolved nine stably coexisting specialists, one per
resource, while others had just a couple of generalists that divided the re-
sources between them. Others still mixed both generalists and specialists. In
all cases, the ecosystems proved to be stable because they persisted after all
mutations were shut off in the system, and if any abundant phenotype were
removed, it would consistently reinvade.

Phylogeny visualizations provide a striking demonstration of the differ-
ences between populations that evolved in a single niche and those from
ecosystems, as displayed in Fig. 1.5. Single-niche populations can have
branching events that persist for a short time, but in the long term, one
species will out compete the others or simply drift to dominance if the fitness
values are truly identical. By contrast, in ecosystems with multiple resources,
the branches that correspond to speciation events persist.

We also studied the number of stably coexisting species as a function
of resource availability [7]. We varied the inflow rate of resources over six
orders of magnitude and found that multi-species communities evolved at
intermediate resource abundance, but not at very high or very low resource
abundance. The reason for this observation is that if resources are too scarce,
they cannot provide much value to the organisms and the base metabolic
rate dominates, while if resources are too abundant, then they are no longer
a limiting factor, which means that space becomes the primary limit. In both
cases, the system reduces down to only a single niche that organisms can take
advantage of.

1.5 Outlook

Digital organisms are a powerful research tool that has opened up methods to
experimentally study evolution in ways that have never before been possible.
We have explained the capabilities of the Avida system and detailed the
methods by which researchers can make use of them. We must be careful,
however, not to be lured into the trap of thinking that because these systems
can be set up and examined so easily that any experiment will be possible.
There are definite limits on the questions that can be answered.

Using digital organisms, we cannot learn anything about physical struc-
tures evolved in the natural world, nor the specifics of an evolutionary event
in our own history; the questions we ask must be about how evolution works
in general and how we can harness it. Even for the latter type of questions,
it is sometimes difficult to set up experiments in such a way that they give
meaningful results. We must always remember that we are working with an
arguably living system that will evolve to survive as best it can, not always
in the direction that we intended. Avida has become, in many ways, its own
bug tester. If we make a mistake, the organisms will exploit it. For exam-
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ple, we originally had only 16-bit inputs for the organisms to process; they
quickly discovered that random guessing often took less time than actually
performing the computation. In this case, the organisms indeed found the
most efficient way to solve the problem we gave them, only that it was not
the problem we had thought we were giving. This error happened to be easy
to find and easy to fix – now all inputs are 32 bits long – but not all “cheat-
ing” will be so simple to identify and prevent. When performing an Avida
experiment, it is always important that we step through the population and
try to understand how some of the organisms are functioning. More often
than not, they will surprise us with the cleverness of the survival strategies
that they are using. Also, sometimes they will even make us step back to
rethink our experiments.

Many possible future directions exist in the development of Avida. On-
going efforts include (among others) the implementation new CPU models
that are more powerful and general purpose, an overhaul of the user inter-
face framework that will support enhanced visualization and cross-platform
graphical interaction with all of the analysis tools, continued refinement of
deme features and organism communication, and the implementation of more
complex and realistic topologies, including physical environments in which
organisms move and grow. Finally, a major new feature in development for
Avida 3.0 will be a full-featured scripting language. The new AvidaScript will
expose all of the power of populations and analysis tools, allowing researchers
to create vastly more sophisticated experiments right out of the box.
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